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Abstract—Big data analytics allows a small number of users to burn a large amount of money very fast. The problem is exacerbated by the 

exploratory nature of big data analytics where queries are iteratively refined, including the submission of many erroneous (e.g., big 

streaming data cluster). In existing systems, clustering must complete after downloading, often after several hours of expensive compute 

time are used for clustering. This project had shown that it is both progressive fetching and clustering to support incremental query 

interactions for data analysts. High Dimensional (HD) clustering has been successfully used in a lot of clustering problems. However, most 

of the applications deal with static data. This project considers how to apply HD in incremental clustering problems. Clustering data by 

identifying a subset of representative examples is important for detecting patterns in data and in processing sensory signals. Such 

“exemplars” can be found by randomly choosing an initial subset of data points as exemplars and then iteratively refining it, but this works 

well only if that initial choice is close to a good solution. This thesis describes a method called “Big Data Clustering using k-Mediods BAT 

Algorithm” KMBAT, that simultaneously considers all data points as potential exemplars, exchanging real-valued messages between data 

points until a high-quality set of exemplars and corresponding clusters gradually emerges. KMBAT takes as input a set of pairwise 

similarities between data points and finds clusters on the basis of maximizing the total similarity between data points and their exemplars. 

Similarity can be simply defined as negative squared Euclidean distance for compatibility with other algorithms, or it can incorporate richer 

domain-specific models (e.g., translation-invariant distances for comparing images). KMBAT’s computational and memory requirements 

scale linearly with the number of similarities input; for non-sparse problems where all possible similarities are computed, these requirements 

scale quadratic ally with the number of data points from big data which is streamed. KMBAT is demonstrated on FACEBOOK social 

network user profile data, which is stored in a big data HDInsight server and cluster with KMBAT which finds better clustering solutions 

than other methods in less time. 

 

Keywords—Clustering; BAT algorithm; k-medoids; HADOOP. 

I. INTRODUCTION  

n Data Warehousing and Data Mining, storing the data, 

analyzing the data, processing the data and managing 

the data cannot be done in parallel. It cannot handle 

both structured and unstructured data at a time. Data 

Warehousing and Data mining spend 95% of the time on 

gathering and retrieving the data and only 5% of the time is 

spend for analyzing the data. But in real time scenario, we are 

in a situation to analyze each and every data. We are 

generating data faster than ever, so the need for Bigdata 

emerged. In Big data 70% of the time is spend on gathering 

and retrieving the data and remaining 30% of the time is spend 

on analyzing the data. For example, twitter have to process 

340 million messages per day where as Amazon S3 storage 

should add more than one billion objects a day, in case of 

Facebook it should handle 2.7 billion “comments” and “likes” 

generated per day by its users. All the above is possible, with 

the help of Big Data. Big data is capable of handling large 

datasets at a time. It can perform data storage, data analysis, 

and data processing and data management techniques in 

parallel. Big data is a popular term used to describe the 

exponential growth and availability of data, both structured 

and unstructured. Big data spends 70% of the time on 

gathering and retrieving the data and remaining 30% of the 

time is spend on analyzing the data. Big data can process even 

several petabytes of data in seconds. Big data analytics will be 

most useful for hospital management and government sectors 

especially in climate condition monitoring. Bigdata analytics 

allows a small number of users to burn a large amount of 

money very fast. The problem is exacerbated by the 

exploratory nature of big data analytics where queries are 

iteratively refined, including the submission of many 

erroneous (e.g., bad query parameters) and off-target queries. 

A. Clustering Big Data 

Cluster analysis seeks to discover groups, or clusters, of 

similar objects. The objects are usually represented as a vector 

of measurements, or a point in multidimensional space. The 

similarity between objects is often determined using distance 

measures over the various dimensions in the dataset. 

Technology advances have made data collection easier and 

faster, resulting in larger, more complex datasets with many 

objects and dimensions. As the datasets become larger and 

more varied, adaptations to existing algorithms are required to 

maintain cluster quality and speed. Traditional clustering 

algorithms consider all of the dimensions of an input dataset in 

an attempt to learn as much as possible about each object 

described. In high dimensional data, however, many of the 

dimensions are often irrelevant. These irrelevant dimensions 

can confuse clustering algorithms by hiding clusters in noisy 

data. In very high dimensions it is common for all of the 

objects in a dataset to be nearly equidistant from each other, 

completely masking the clusters. Feature selection methods 

have been employed somewhat successfully to improve cluster 

quality. These algorithms find a subset of dimensions on 

which to perform clustering by removing ir-relevant and 
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redundant dimensions. Unlike feature selection methods which 

examine the dataset as a whole, subspace clustering algorithms 

localize their search and are able to uncover clusters that exist 

in multiple, possibly overlapping subspaces. 

B. Motivation 

With the rising of data sharing websites, such as Facebook 

and Flickr, there is a dramatic growth in the number of data. 

For example, Facebook reports about 6 billion new photos 

every month and 72 hours of video are uploaded to YouTube 

every minute. One of major data mining tasks is to 

unsupervised categorize the large-scale data. In the Project 

Description chapter the clear problem analysis is made, which 

helps to understand the problem definition and the overview of 

the research work. Also the process flow of the research, the 

sequential process and finally the estimated time limit of the 

research completion are also analyzed. 

II. LITERATURE SUPPORT 

Data mining environment produces a large amount of data 

that need to be analyzed; patterns have to be extracted from 

that to gain knowledge. It has become difficult to process, 

manage and analyze patterns using traditional databases and 

architectures. This presents a review of various algorithms 

necessary for handling such large data set. To extract patterns 

and classify data with high similar traits, Data Mining 

approaches such as Genetic algorithm, neural networks, 

support vector Machines, association algorithm, clustering 

algorithm, cluster analysis, were used. Big Data architecture 

typically consists of three segments: 

 Storage system 

  Handling and  

  Analysis 

Big Data typically differ from data warehouse in 

architecture; it follows a distributed approach whereas a data 

warehouse follows a centralized one. The Data Mining termed 

Knowledge; its architecture was laid describing extracting 

knowledge from large data. Data was analyzed using software 

Hive and Hadoop. For the analysis of data with different 

format cloud structure was laid. 

In 2004, Map Reduce was proposed by Google, it is an object-

oriented programming model to deal with the large data, 

primarily used for processing internet data. The Map Reduce 

technology includes two basic operation conceptions:  

 Map (Mapping) and  

 Reduce (Simplication).  

The Map technology mainly processes a group of input 

data record and distributes data to several servers and 

operation systems. Its means of processing data is a strategy 

based on the key/value. The Reduce technology mainly 

occupies itself in summarizing and processing the result after 

processing the above key/value. Map Reduce is designed for 

mass composed of low-end computer cluster, its excellent 

scalability has been fully verified in industry. Map Reduce has 

low requirement to hardware. Map Reduce can store data in 

any format; can achieve a variety of complex data processing 

function. Analysis based on the Map Reduce platform, without 

the need of complex data preprocessing and writing in the 

database process. 

With the availability of large-scale computing platforms 

for high-fidelity design and simulations, and instrumentation 

for gathering scientific as well as business data, increased 

emphasis is being placed on efficient techniques for analyzing 

large and extremely high-dimensional data sets. Analysis of 

high-dimensional data typically takes the form of extracting 

correlations between data items, discovering meaningful 

information in data, clustering data items, and finding efficient 

representations for clustered data, classification, and event 

association. Since the volume (and dimensionality) of data is 

typically large, the emphasis of new algorithms must be on 

efficiency and scalability to large data sets. Analysis of 

continuous attribute data generally takes the form of Eigen 

value/ singular value problems (PCA/rank reduction), 

clustering, least squares problems, etc. Analysis of discrete 

data sets, however, generally leads to NP complete/hard 

problems, especially when physically interpretable results in 

discrete spaces are desired. 

Compression of discrete data is a particularly challenging 

problem when compressed data is required to directly convey 

the underlying patterns in the data. Conventional techniques 

such as singular value decomposition (SVD), frequency 

transforms such as discrete cosine transforms (DCT) and 

wavelets, and others do not apply here because the compressed 

data (orthogonalzed vectors or frequency coefficients) are not 

directly interpretable as signals in noisy data. Techniques for 

clustering do not generalize easily to extremely high 

dimensions (104 or more) while yielding error-bounded 

cluster centroids. Unfortunately, the runtimes of all these 

methods are unacceptably large when scaled to millions of 

records of very high dimension. 

A. Full-Data processing: Data is stored or cached in 

(distributed) main memory, and uses efficient organizations 

such as columnar formats, in order to allow queries over the 

entire data to complete in a very short time. Examples of such 

systems include Dremel [6] and PowerDrill [7].  

B. Progressive processing: An alternative paradigm that can 

better fit a low-cost iterative querying paradigm is progressive 

processing, where the system produces early results based on 

partially processed data, and progressively refines these results 

as more data is received; until all the data is read, at which 

point the final result is produced. Progressive processing 

allows users to get early results using significantly fewer 

resources, and potentially end (or reissue) computations early 

once sufficient accuracy – or an early indication of query 

incorrectness – is observed. Several systems fall under the 

umbrella of progressive analytics, including the CONTROL 

project [3], the DBO system [5], and Map-Reduce-Online [6]. 

In this paper cluster the incremental data using kmediod bat 

algorithm. Incremental analysis is an alternative to other 

techniques that are more familiar, but have disadvantages 

compared to our method. In this section, we first discuss these 

techniques in order to motivate incremental data analysis. We 

then discuss techniques for visualizing uncertainty, which we 

adapt for our clustering. 
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III. PROPOSED FRAMEWORK 

 
Fig. 1. Integral component. 

A. Social Connection 

Social Intranets are the cornerstone of company-wide 

collaboration. This system Dashboard is a customizable start 

page, which displays the information that matters to you, all in 

one place. Share status updates, discover popular content and 

connect with the people who can help you get your job done. 

This system has dashboard is an students personal home page 

linking to everything they need, as well as providing visibility 

into changes across the college for a quick determination into 

what needs attention and involvement. 

(i) Communications platform 

Social Enterprise dashboards come with administrative 

control that can be locked in place and used for companywide 

communications such as announcements    and events. 

Enabling an efficient line of communication within the 

enterprise helps students to understand department initiatives 

and positioning and leads to a more cohesive and empowered 

communication that understands the college vision and their 

role in executing to that vision. 

(ii)Social profile 

Social Enterprise is accessible any time from multiple 

platforms such as the web, mobile devices or your desktop 

client. No matter where you are, you'll always be able to 

access your critical college content, and connect and share 

with your group. Student specifies their social profile ids. This 

system stores the id and mines for the social usage 

information.  

B. API Interactions and Notification 

The Graph API is the core of Facebook Platform, enabling 

developers to read from and write data into Facebook. The 

Graph API presents a simple, consistent view of the Facebook 

social graph, uniformly representing objects in the graph (e.g., 

people, photos, events, and pages) and the connections 

between them (e.g., friend relationships, shared content, and 

photo tags). The Graph API is the primary way to get data in 

and out of Facebook's social graph. It's a low-level HTTP-

based API that you can use to query data, post new stories, 

upload photos and a variety of other tasks that an app might 

need to do. 

The Graph API is named after the idea of a 'social graph' - a 

representation of the information on Facebook composed of: 

 nodes (basically "things" such as a User, a Photo, a 

Page, a Comment) 

 edges (the connections between those "things", such as 

a Page's Photos, or a Photo's Comments) 

 fields (info about those "things", such as the birthday of 

a User, or the name of a Page). 

The Graph API is HTTP based, so works with any 

language that has an HTTP library, such as cURL, urllib. We'll 

explain a bit more about what you can do with this in the 

section below, but it means you can also use the Graph API 

directly in your browser once the student usage detail is mined 

to that profile the notification is sent. 

 

 
Fig. 2. Graph API. 

C. Hadoop Connection 

Hadoop is implemented as a set of interrelated project 

components. The core components are MapReduce, which 

handles job execution, and a storage layer, typically 

implemented as the Hadoop Distributed File System (HDFS) 

this project uses Windows Azure HDInsight for HDFS. In 

HDInsight Hadoop components are implemented across a 

series of servers referred to as Blobs.  These blobs are where 

data are stored and processed. A name blob server keeps track 

of the data blobs in the environment, which data are stored on 
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which blob, and presents that data blob as a singular entity.  

This singular representation is referred to as a cluster. Once 

the process is complete, you have a working HDInsight 

cluster. The cluster consists of data nodes, a name node, and 

an associated storage account delivered through the Azure 

Storage service. The portal will show you the HDInsight 

cluster as soon as provisioning is completed but to see the 

storage account, you may need click the HOME link at the top 

of the portal and then click PORTAL from the Azure 

homepage to return to the portal page. The storage account 

should now be visible. 

(i) Loading data to hadoop clusters  

Hadoop presents a REST interface on HTTP port 50070. 

And while you could program data loads directly against that 

interface, the .NET SDK makes available a Web HDFS client 

to simplify the process. To make use of the Web HDFS client, 

you must have knowledge of which storage system is used 

within the cluster to which you are loading data. By default, 

the Web HDFS client assumes the target cluster employs 

HDFS. In this post, we will focus on the use of the Web HDFS 

client against our local desktop development cluster, which 

makes use of HDFS.  

 

CONNECT TO HD INSIGHT 

  
Fig. 3. HDinsight connection flow diagram. 

DATASET LOADING SEQUENCE 

 
Fig. 4. Loading dataset from HDinsight flow diagram. 

 

D. Progressive Fetching  

This query should look familiar to any developer with 

experience using LINQ. Because this project uses LINQ as its 

query language, this query looks just like a LINQ to SQL 

query hitting a database or an in-memory filtering of an IList a 

class in .net framework. As events arrive from the input 

adapter, their payloads are inspected, and if the value of the 

Value property is greater than 0.5, they’re passed to the output 

adapter where they’re printed to the console. 

When the application runs, notice that events continually 

arrive in the output. This is effectively a push model. This 

project computes new output events from inputs as they arrive, 

rather than a pull model like a database where the application 

must periodically poll the data source to see if new data has 

arrived. This fits nicely with the support of IObservable 

available in the Microsoft .NET Framework 4. 

Having a push model for continuous data instead of polling 

is nice, but the real power of progressive fetching becomes 

apparent when querying over properties relating to time. As 

events arrive through the input adapter, they’re given a 

timestamp. This timestamp may come from the data source 

itself (suppose the events represent historical data with an 

explicit column storing the time) or can be set to the time the 
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event arrived. Time is, in effect, first class in the querying 

language of this project. 

Queries often look like standard database queries with a 

time qualifier stuck on the end, such as “every five seconds” 

or “every three seconds over a five-second span.” For 

example, here’s a simple query that finds the average of the 

Value property every five seconds: 

var aggregated = from i in inputStream 

.TumblingWindow(TimeSpan.FromSeconds(5),  

HoppingWindowOutputPolicy.ClipToWindowEnd) 

select new { Avg = i.Avg(p => p.Value)}; 

(i)Windows of data 

Because the concept of time is a fundamental necessity to 

complex event-processing systems, it’s important to have a 

simple way to work with the time component of query logic in 

the system. This project uses the concept of windows to 

represent groupings by time. The previous query uses a 

tumbling window. When the application runs, the query will 

generate a single output event every five seconds (the size of 

the window). The output event represents the average over the 

last five seconds. Just like in LINQ to SQL or LINQ to 

Objects, aggregation methods like Sum and Average can roll 

up events grouped by time into single values, or Select can be 

used to project the output into a different format. 

Tumbling windows are just a special case of another 

window type: the hopping window. Hopping windows have a 

size, too, but they also have a hop size that isn’t equal to their 

window size. This means hopping windows can overlap each 

other. 

For example, a hopping window with a window size of 

five seconds and a hop size of three seconds will produce 

output every three seconds (the hop size), giving you the 

average over the last five seconds (the window size). It hops 

forward three seconds at a time and is five seconds long. 

figure 6 shows an event stream grouped into tumbling and 

hopping windows. 

 

 
Fig. 6. Tumbling and Hopping Windows. 

 

Notice that the tumbling windows do not overlap, but the 

hopping windows can if the hop size is smaller than the 

window size. If the windows overlap, an event may end up in 

more than one, like the third event, which is in both windows 

1 and window 2. Edge events (that have duration) may also 

overlap window boundaries and end up in more than one 

window, like the second-to-last event in the tumbling window. 

Another common window type is the count window. Count 

windows contain a specific number of events rather than 

events at a particular point or duration of time. A query to find 

the average of the last three events that arrived would use a 

count window. One current limitation of count windows is that 

the built-in aggregation methods like Sum and Average are not 

supported. Instead, you must create a user-defined aggregate. 

This simple process is explained later in the article. 

The final window type is the snapshot window. Snapshot 

windows are easiest to understand in the context of edge 

events. Every time an event begins or ends, the current 

window is completed and a new one starts. Figure 7 shows 

how edge events are grouped into snapshot windows. Notice 

how every event boundary triggers a window boundary. E1 

begins and so does w1. When E2 begins, w1 is completed and 

w2 begins. The next edge is E1 ending, which completes w2 

and starts w3. The result is three windows: w1 containing E1, 

w2 containing E1 and E2, and w3 containing E3. Once the 

events are grouped into the windows, they’re stretched so that 

it appears that the event begins and ends when the window 

does. In this way progressive way works. 

 

 
Fig. 7. Snapshot window. 

 

E. K-Medoids Clustering Algorithm 

K-Medoids is the most popular clustering algorithm in 

which a data set of n object is clustered with k number of 

cluster, which is given by the user. This algorithm works on 

the principle of minimizing the dissimilarities between each & 

every object in a cluster and its representative object. Initially, 

we have to choose the representative object arbitrarily and this 

object is known as Medoid. Find a single partition of the data 

into K clusters such that each cluster has a most representative 

point, i.e., a point that is the most “centrally” located point in 

the cluster with respect to some measure, e.g., distance. These 

representative points are called Medoids. 

F. Bat Algorithm 

Bat algorithm is swarm intelligence based algorithm which 

is worked on the echolocation of bats. This algorithm was 

developed by Xin-She Yang in 2010. It is a new metaheuristic 

algorithm for solving the many optimization problems. Bats 

are based on the echolocation behaviour of bats. They can find 

their prey o food and also they can know the different type of 

insects even in a complete darkness. Since we know that 
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microbats are the insectivore who have the quality of 

fascinating. These bats use a type of sonar namely as 

echolocation. They emit a loud sound pulse and detect a echo 

that is comes back from their surrounding objects. Their pulse 

varying in properties and will be depend on the species. Their 

loudness is also varying. When they are searching for their 

prey, their loudness is loudest if they are far away from the 

prey and they will become slow when they are nearer to the 

prey. Now for emission and detection of echo which are 

generated by them, they use time delay. And this time delay is 

between their two ears and the loudness variation of echoes. 

The following formulae are used for their position xi and 

velocities vi when they are updated: fi = fmin + (fmax − 

fmin)β, ...(2.1.1) vti = vt-1i + (xti – x*)fi, ...(2.1.2) xti = xt-1i 

+ vti , ...(2.1.3) We know that loudness is decreases when bat 

found its prey or food but the rate of pulse emission increases. 

For simplicity we use loudness A0 = 1 and minimum Amin = 

0 that means a bat found their prey and they stop making 

sound. where β ∈ [0, 1] is a random vector drawn from a 

uniform distribution. Here x∗ is the current global best 

location (solution) which is located after comparing all the 

solutions among all the n bats. Generally speaking, depending 

on the domain size of the problem of interest, the frequency f 

is assigned to fmin = 0 and fmax = 100 in practical 

implementat ion. Initially, each bat is randomly given a 

frequency which is drawn uniformly from [fmin, fmax]. For 

the local search part, once a solution is selected among the 

current best solutions, a new solution for each bat is generated 

locally using random walk. Xnew = xold + εAt ...(2.1.4) The 

update of the velocities and positions of bats have some 

similarity to the procedure in the standard particle swarm 

optimization as fi in essence controls the pace and range of the 

movement of the swarming particles. To some degree, BA can 

be considered as a balanced combination of the standard 

particle swarm optimization and the intensive local search 

controlled by the loudness and pulse rate. Furthermore, the 

loudness Ai and the rate ri of pulse emission update 

accordingly as the iterations proceed 

G. Proposed K Mediods Bat Algorithm 

In this section we will speed up local search by relaxing 

the number of clusters in the intermediate steps and achieve 

exactly k clusters in the final step. We must use at least k 

medians in the intermediate steps, since the best solution with 

k - 1 medians can be much more expensive than the best k 

median solution, and we are interested in guarantees. At the 

same time we cannot use too many since we want to save 

space. Since we have flexibility in k, we can develop a new 

cluster head detection using bat algorithm.  

The proposed algorithm is given in as: 

 Initializing the objective function f(x) 

 Initialize the population of bat xi where i=1,2,3....n and 

velocity vi 

 Set the maximum iteration max_iter 

 Set time t=1 

 Define pulse frequency fi for bats at each position 

 Define the pulse rate that is emitted by the bat ri and the 

loudness Ai 

o While(t < max_iter) 

o Generate the new solutions by adjusting frequencies 

and update velocity and location using formulae 

(equation (1) to (3)) 

o Initialize k as initial representative object 

o Assign each xi to its nearest representative object 

with the most similar based on the medoids of the 

objects in a cluster 

o Select a non representative object randomly Orandom 

o Calculate the cost S 

If S < 0 

Swap the Oi with Orandom 

Else 

Go to step b 

If ( rand > ri) 

 Select a solution from the best solutions 

 Generate a local solution 

 End if 

o Generate a new solution by the flying of bats 

ramdomly 

o If (rand <Ai) 

 Accept the new solution 

 Increment the pulse rate and decrement the loudness 

o End if 

o Rank the bats and find the bet population in bat x* 

o Increase the t 

o End while 

 Result will be given 

 
Fig. 8. Clustering flow diagram. 
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Algorithm Initial Cluster (data set N , clusters z ) 

1. Reorder data points randomly 

2. Create a cluster center at the first point 3. For every point 

after the first, 

 Let d=  distance from the current point to the nearest 

existing cluster center 

 With probability d/z create a new cluster center at the 

current point; otherwise add the current point to the best 

current cluster 

This algorithm runs in time proportional to n times the 

number of facilities it opens and obtains an expected k-

approximation to optimum [11]. 

IV. RESULT EVALUATION 

This section presents evaluation results of IAPKM and 

IAPNA on Facebook Social dataset, which is streamed from 

big data, is used. The goal of this project is to use incremental 

variant of KM-BAT clustering, which can achieve comparable 

clustering performance with traditional KM-BAT by adjusting 

the current clustering results according to new arriving 

objects. Therefore, traditional KM-BAT clustering is 

implemented to provide benchmark-clustering performance.  

The benchmark results are shown in below table I, 

 
TABLE I. Comparison results of KM-BAT vs IAPKM vs IAPNA. 

Time Object KM-BAT IAPKM IAPNA 

5 1500 10 12 13 

10 2500 14 15 17 

15 3500 18 22 27 

V. CONCLUSION 

While the concept of incremental queries has been known 

for some time, the clustering implications have not been 

explored with users. In particular, it has been an open question 

whether data analysts would be comfortable interacting with 

confidence intervals. We hope that showing the utility of these 

approximations will encourage further research on both the 

front- and back-ends of these systems. This project had shown 

that it is both progressive fetching and clustering to support 

incremental query interactions for data analysts. With such 

mechanisms in place, analysts can take advantage of the 

immediate feedback afforded by incremental queries by 

rapidly refining their queries, and more importantly, exploring 

new avenues which they would not have done before .Our 

approach has validated the concept of incremental queries. We 

have shown that it is possible to use interaction strategies that 

analysts have desired, but not been able to pursue given the 

time required to complete clustering of large scale BIG data 

databases. The experience of exposing users to incremental 

queries and approximate clustering’s motivates several lines of 

future work. First, it has highlighted the importance of 

exploring representations of confidence. While error bars are 

conventional, they are not necessarily easily comprehensible. 

In addition, they can only highlight one probability value at a 

time. The downsides of error bars, such as the difficulties they 

raise with scaling, argue that there could be an opportunity to 

find new ways to represent confidence intervals. 
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