

37

R. Suganya and S. Vydehi, “An efficient approach for clustering high dimensional data,” International Journal of Scientific and Technical

Advancements, Volume 2, Issue 1, pp. 37-43, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

An Efficient Approach for Clustering High

Dimensional Data

R. Suganya
1
, S. Vydehi

2

1, 2
Department of Computer Science, Dr. SNS Rajalakshmi College of Arts and Science, Coimbatore, Tamil Nadu, India

Email address:
1
rsuganya.2292@gmail.com,

2
vydehiela@gmail.com

Abstract—Big data analytics allows a small number of users to burn a large amount of money very fast. The problem is exacerbated by the

exploratory nature of big data analytics where queries are iteratively refined, including the submission of many erroneous (e.g., big

streaming data cluster). In existing systems, clustering must complete after downloading, often after several hours of expensive compute

time are used for clustering. This project had shown that it is both progressive fetching and clustering to support incremental query

interactions for data analysts. High Dimensional (HD) clustering has been successfully used in a lot of clustering problems. However, most

of the applications deal with static data. This project considers how to apply HD in incremental clustering problems. Clustering data by

identifying a subset of representative examples is important for detecting patterns in data and in processing sensory signals. Such

“exemplars” can be found by randomly choosing an initial subset of data points as exemplars and then iteratively refining it, but this works

well only if that initial choice is close to a good solution. This thesis describes a method called “Big Data Clustering using k-Mediods BAT

Algorithm” KMBAT, that simultaneously considers all data points as potential exemplars, exchanging real-valued messages between data

points until a high-quality set of exemplars and corresponding clusters gradually emerges. KMBAT takes as input a set of pairwise

similarities between data points and finds clusters on the basis of maximizing the total similarity between data points and their exemplars.

Similarity can be simply defined as negative squared Euclidean distance for compatibility with other algorithms, or it can incorporate richer

domain-specific models (e.g., translation-invariant distances for comparing images). KMBAT’s computational and memory requirements

scale linearly with the number of similarities input; for non-sparse problems where all possible similarities are computed, these requirements

scale quadratic ally with the number of data points from big data which is streamed. KMBAT is demonstrated on FACEBOOK social

network user profile data, which is stored in a big data HDInsight server and cluster with KMBAT which finds better clustering solutions

than other methods in less time.

Keywords—Clustering; BAT algorithm; k-medoids; HADOOP.

I. INTRODUCTION

n Data Warehousing and Data Mining, storing the data,

analyzing the data, processing the data and managing

the data cannot be done in parallel. It cannot handle

both structured and unstructured data at a time. Data

Warehousing and Data mining spend 95% of the time on

gathering and retrieving the data and only 5% of the time is

spend for analyzing the data. But in real time scenario, we are

in a situation to analyze each and every data. We are

generating data faster than ever, so the need for Bigdata

emerged. In Big data 70% of the time is spend on gathering

and retrieving the data and remaining 30% of the time is spend

on analyzing the data. For example, twitter have to process

340 million messages per day where as Amazon S3 storage

should add more than one billion objects a day, in case of

Facebook it should handle 2.7 billion “comments” and “likes”

generated per day by its users. All the above is possible, with

the help of Big Data. Big data is capable of handling large

datasets at a time. It can perform data storage, data analysis,

and data processing and data management techniques in

parallel. Big data is a popular term used to describe the

exponential growth and availability of data, both structured

and unstructured. Big data spends 70% of the time on

gathering and retrieving the data and remaining 30% of the

time is spend on analyzing the data. Big data can process even

several petabytes of data in seconds. Big data analytics will be

most useful for hospital management and government sectors

especially in climate condition monitoring. Bigdata analytics

allows a small number of users to burn a large amount of

money very fast. The problem is exacerbated by the

exploratory nature of big data analytics where queries are

iteratively refined, including the submission of many

erroneous (e.g., bad query parameters) and off-target queries.

A. Clustering Big Data

Cluster analysis seeks to discover groups, or clusters, of

similar objects. The objects are usually represented as a vector

of measurements, or a point in multidimensional space. The

similarity between objects is often determined using distance

measures over the various dimensions in the dataset.

Technology advances have made data collection easier and

faster, resulting in larger, more complex datasets with many

objects and dimensions. As the datasets become larger and

more varied, adaptations to existing algorithms are required to

maintain cluster quality and speed. Traditional clustering

algorithms consider all of the dimensions of an input dataset in

an attempt to learn as much as possible about each object

described. In high dimensional data, however, many of the

dimensions are often irrelevant. These irrelevant dimensions

can confuse clustering algorithms by hiding clusters in noisy

data. In very high dimensions it is common for all of the

objects in a dataset to be nearly equidistant from each other,

completely masking the clusters. Feature selection methods

have been employed somewhat successfully to improve cluster

quality. These algorithms find a subset of dimensions on

which to perform clustering by removing ir-relevant and

I

mailto:rsuganya.2292@gmail.com

38

R. Suganya and S. Vydehi, “An efficient approach for clustering high dimensional data,” International Journal of Scientific and Technical

Advancements, Volume 2, Issue 1, pp. 37-43, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

redundant dimensions. Unlike feature selection methods which

examine the dataset as a whole, subspace clustering algorithms

localize their search and are able to uncover clusters that exist

in multiple, possibly overlapping subspaces.

B. Motivation

With the rising of data sharing websites, such as Facebook

and Flickr, there is a dramatic growth in the number of data.

For example, Facebook reports about 6 billion new photos

every month and 72 hours of video are uploaded to YouTube

every minute. One of major data mining tasks is to

unsupervised categorize the large-scale data. In the Project

Description chapter the clear problem analysis is made, which

helps to understand the problem definition and the overview of

the research work. Also the process flow of the research, the

sequential process and finally the estimated time limit of the

research completion are also analyzed.

II. LITERATURE SUPPORT

Data mining environment produces a large amount of data

that need to be analyzed; patterns have to be extracted from

that to gain knowledge. It has become difficult to process,

manage and analyze patterns using traditional databases and

architectures. This presents a review of various algorithms

necessary for handling such large data set. To extract patterns

and classify data with high similar traits, Data Mining

approaches such as Genetic algorithm, neural networks,

support vector Machines, association algorithm, clustering

algorithm, cluster analysis, were used. Big Data architecture

typically consists of three segments:

 Storage system

 Handling and

 Analysis

Big Data typically differ from data warehouse in

architecture; it follows a distributed approach whereas a data

warehouse follows a centralized one. The Data Mining termed

Knowledge; its architecture was laid describing extracting

knowledge from large data. Data was analyzed using software

Hive and Hadoop. For the analysis of data with different

format cloud structure was laid.

In 2004, Map Reduce was proposed by Google, it is an object-

oriented programming model to deal with the large data,

primarily used for processing internet data. The Map Reduce

technology includes two basic operation conceptions:

 Map (Mapping) and

 Reduce (Simplication).

The Map technology mainly processes a group of input

data record and distributes data to several servers and

operation systems. Its means of processing data is a strategy

based on the key/value. The Reduce technology mainly

occupies itself in summarizing and processing the result after

processing the above key/value. Map Reduce is designed for

mass composed of low-end computer cluster, its excellent

scalability has been fully verified in industry. Map Reduce has

low requirement to hardware. Map Reduce can store data in

any format; can achieve a variety of complex data processing

function. Analysis based on the Map Reduce platform, without

the need of complex data preprocessing and writing in the

database process.

With the availability of large-scale computing platforms

for high-fidelity design and simulations, and instrumentation

for gathering scientific as well as business data, increased

emphasis is being placed on efficient techniques for analyzing

large and extremely high-dimensional data sets. Analysis of

high-dimensional data typically takes the form of extracting

correlations between data items, discovering meaningful

information in data, clustering data items, and finding efficient

representations for clustered data, classification, and event

association. Since the volume (and dimensionality) of data is

typically large, the emphasis of new algorithms must be on

efficiency and scalability to large data sets. Analysis of

continuous attribute data generally takes the form of Eigen

value/ singular value problems (PCA/rank reduction),

clustering, least squares problems, etc. Analysis of discrete

data sets, however, generally leads to NP complete/hard

problems, especially when physically interpretable results in

discrete spaces are desired.

Compression of discrete data is a particularly challenging

problem when compressed data is required to directly convey

the underlying patterns in the data. Conventional techniques

such as singular value decomposition (SVD), frequency

transforms such as discrete cosine transforms (DCT) and

wavelets, and others do not apply here because the compressed

data (orthogonalzed vectors or frequency coefficients) are not

directly interpretable as signals in noisy data. Techniques for

clustering do not generalize easily to extremely high

dimensions (104 or more) while yielding error-bounded

cluster centroids. Unfortunately, the runtimes of all these

methods are unacceptably large when scaled to millions of

records of very high dimension.

A. Full-Data processing: Data is stored or cached in

(distributed) main memory, and uses efficient organizations

such as columnar formats, in order to allow queries over the

entire data to complete in a very short time. Examples of such

systems include Dremel [6] and PowerDrill [7].

B. Progressive processing: An alternative paradigm that can

better fit a low-cost iterative querying paradigm is progressive

processing, where the system produces early results based on

partially processed data, and progressively refines these results

as more data is received; until all the data is read, at which

point the final result is produced. Progressive processing

allows users to get early results using significantly fewer

resources, and potentially end (or reissue) computations early

once sufficient accuracy – or an early indication of query

incorrectness – is observed. Several systems fall under the

umbrella of progressive analytics, including the CONTROL

project [3], the DBO system [5], and Map-Reduce-Online [6].

In this paper cluster the incremental data using kmediod bat

algorithm. Incremental analysis is an alternative to other

techniques that are more familiar, but have disadvantages

compared to our method. In this section, we first discuss these

techniques in order to motivate incremental data analysis. We

then discuss techniques for visualizing uncertainty, which we

adapt for our clustering.

39

R. Suganya and S. Vydehi, “An efficient approach for clustering high dimensional data,” International Journal of Scientific and Technical

Advancements, Volume 2, Issue 1, pp. 37-43, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

III. PROPOSED FRAMEWORK

Fig. 1. Integral component.

A. Social Connection

Social Intranets are the cornerstone of company-wide

collaboration. This system Dashboard is a customizable start

page, which displays the information that matters to you, all in

one place. Share status updates, discover popular content and

connect with the people who can help you get your job done.

This system has dashboard is an students personal home page

linking to everything they need, as well as providing visibility

into changes across the college for a quick determination into

what needs attention and involvement.

(i) Communications platform

Social Enterprise dashboards come with administrative

control that can be locked in place and used for companywide

communications such as announcements and events.

Enabling an efficient line of communication within the

enterprise helps students to understand department initiatives

and positioning and leads to a more cohesive and empowered

communication that understands the college vision and their

role in executing to that vision.

(ii)Social profile

Social Enterprise is accessible any time from multiple

platforms such as the web, mobile devices or your desktop

client. No matter where you are, you'll always be able to

access your critical college content, and connect and share

with your group. Student specifies their social profile ids. This

system stores the id and mines for the social usage

information.

B. API Interactions and Notification

The Graph API is the core of Facebook Platform, enabling

developers to read from and write data into Facebook. The

Graph API presents a simple, consistent view of the Facebook

social graph, uniformly representing objects in the graph (e.g.,

people, photos, events, and pages) and the connections

between them (e.g., friend relationships, shared content, and

photo tags). The Graph API is the primary way to get data in

and out of Facebook's social graph. It's a low-level HTTP-

based API that you can use to query data, post new stories,

upload photos and a variety of other tasks that an app might

need to do.

The Graph API is named after the idea of a 'social graph' - a

representation of the information on Facebook composed of:

 nodes (basically "things" such as a User, a Photo, a

Page, a Comment)

 edges (the connections between those "things", such as

a Page's Photos, or a Photo's Comments)

 fields (info about those "things", such as the birthday of

a User, or the name of a Page).

The Graph API is HTTP based, so works with any

language that has an HTTP library, such as cURL, urllib. We'll

explain a bit more about what you can do with this in the

section below, but it means you can also use the Graph API

directly in your browser once the student usage detail is mined

to that profile the notification is sent.

Fig. 2. Graph API.

C. Hadoop Connection

Hadoop is implemented as a set of interrelated project

components. The core components are MapReduce, which

handles job execution, and a storage layer, typically

implemented as the Hadoop Distributed File System (HDFS)

this project uses Windows Azure HDInsight for HDFS. In

HDInsight Hadoop components are implemented across a

series of servers referred to as Blobs. These blobs are where

data are stored and processed. A name blob server keeps track

of the data blobs in the environment, which data are stored on

40

R. Suganya and S. Vydehi, “An efficient approach for clustering high dimensional data,” International Journal of Scientific and Technical

Advancements, Volume 2, Issue 1, pp. 37-43, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

which blob, and presents that data blob as a singular entity.

This singular representation is referred to as a cluster. Once

the process is complete, you have a working HDInsight

cluster. The cluster consists of data nodes, a name node, and

an associated storage account delivered through the Azure

Storage service. The portal will show you the HDInsight

cluster as soon as provisioning is completed but to see the

storage account, you may need click the HOME link at the top

of the portal and then click PORTAL from the Azure

homepage to return to the portal page. The storage account

should now be visible.

(i) Loading data to hadoop clusters

Hadoop presents a REST interface on HTTP port 50070.

And while you could program data loads directly against that

interface, the .NET SDK makes available a Web HDFS client

to simplify the process. To make use of the Web HDFS client,

you must have knowledge of which storage system is used

within the cluster to which you are loading data. By default,

the Web HDFS client assumes the target cluster employs

HDFS. In this post, we will focus on the use of the Web HDFS

client against our local desktop development cluster, which

makes use of HDFS.

CONNECT TO HD INSIGHT

Fig. 3. HDinsight connection flow diagram.

DATASET LOADING SEQUENCE

Fig. 4. Loading dataset from HDinsight flow diagram.

D. Progressive Fetching

This query should look familiar to any developer with

experience using LINQ. Because this project uses LINQ as its

query language, this query looks just like a LINQ to SQL

query hitting a database or an in-memory filtering of an IList a

class in .net framework. As events arrive from the input

adapter, their payloads are inspected, and if the value of the

Value property is greater than 0.5, they’re passed to the output

adapter where they’re printed to the console.

When the application runs, notice that events continually

arrive in the output. This is effectively a push model. This

project computes new output events from inputs as they arrive,

rather than a pull model like a database where the application

must periodically poll the data source to see if new data has

arrived. This fits nicely with the support of IObservable

available in the Microsoft .NET Framework 4.

Having a push model for continuous data instead of polling

is nice, but the real power of progressive fetching becomes

apparent when querying over properties relating to time. As

events arrive through the input adapter, they’re given a

timestamp. This timestamp may come from the data source

itself (suppose the events represent historical data with an

explicit column storing the time) or can be set to the time the

41

R. Suganya and S. Vydehi, “An efficient approach for clustering high dimensional data,” International Journal of Scientific and Technical

Advancements, Volume 2, Issue 1, pp. 37-43, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

event arrived. Time is, in effect, first class in the querying

language of this project.

Queries often look like standard database queries with a

time qualifier stuck on the end, such as “every five seconds”

or “every three seconds over a five-second span.” For

example, here’s a simple query that finds the average of the

Value property every five seconds:

var aggregated = from i in inputStream

.TumblingWindow(TimeSpan.FromSeconds(5),

HoppingWindowOutputPolicy.ClipToWindowEnd)

select new { Avg = i.Avg(p => p.Value)};

(i)Windows of data

Because the concept of time is a fundamental necessity to

complex event-processing systems, it’s important to have a

simple way to work with the time component of query logic in

the system. This project uses the concept of windows to

represent groupings by time. The previous query uses a

tumbling window. When the application runs, the query will

generate a single output event every five seconds (the size of

the window). The output event represents the average over the

last five seconds. Just like in LINQ to SQL or LINQ to

Objects, aggregation methods like Sum and Average can roll

up events grouped by time into single values, or Select can be

used to project the output into a different format.

Tumbling windows are just a special case of another

window type: the hopping window. Hopping windows have a

size, too, but they also have a hop size that isn’t equal to their

window size. This means hopping windows can overlap each

other.

For example, a hopping window with a window size of

five seconds and a hop size of three seconds will produce

output every three seconds (the hop size), giving you the

average over the last five seconds (the window size). It hops

forward three seconds at a time and is five seconds long.

figure 6 shows an event stream grouped into tumbling and

hopping windows.

Fig. 6. Tumbling and Hopping Windows.

Notice that the tumbling windows do not overlap, but the

hopping windows can if the hop size is smaller than the

window size. If the windows overlap, an event may end up in

more than one, like the third event, which is in both windows

1 and window 2. Edge events (that have duration) may also

overlap window boundaries and end up in more than one

window, like the second-to-last event in the tumbling window.

Another common window type is the count window. Count

windows contain a specific number of events rather than

events at a particular point or duration of time. A query to find

the average of the last three events that arrived would use a

count window. One current limitation of count windows is that

the built-in aggregation methods like Sum and Average are not

supported. Instead, you must create a user-defined aggregate.

This simple process is explained later in the article.

The final window type is the snapshot window. Snapshot

windows are easiest to understand in the context of edge

events. Every time an event begins or ends, the current

window is completed and a new one starts. Figure 7 shows

how edge events are grouped into snapshot windows. Notice

how every event boundary triggers a window boundary. E1

begins and so does w1. When E2 begins, w1 is completed and

w2 begins. The next edge is E1 ending, which completes w2

and starts w3. The result is three windows: w1 containing E1,

w2 containing E1 and E2, and w3 containing E3. Once the

events are grouped into the windows, they’re stretched so that

it appears that the event begins and ends when the window

does. In this way progressive way works.

Fig. 7. Snapshot window.

E. K-Medoids Clustering Algorithm

K-Medoids is the most popular clustering algorithm in

which a data set of n object is clustered with k number of

cluster, which is given by the user. This algorithm works on

the principle of minimizing the dissimilarities between each &

every object in a cluster and its representative object. Initially,

we have to choose the representative object arbitrarily and this

object is known as Medoid. Find a single partition of the data

into K clusters such that each cluster has a most representative

point, i.e., a point that is the most “centrally” located point in

the cluster with respect to some measure, e.g., distance. These

representative points are called Medoids.

F. Bat Algorithm

Bat algorithm is swarm intelligence based algorithm which

is worked on the echolocation of bats. This algorithm was

developed by Xin-She Yang in 2010. It is a new metaheuristic

algorithm for solving the many optimization problems. Bats

are based on the echolocation behaviour of bats. They can find

their prey o food and also they can know the different type of

insects even in a complete darkness. Since we know that

42

R. Suganya and S. Vydehi, “An efficient approach for clustering high dimensional data,” International Journal of Scientific and Technical

Advancements, Volume 2, Issue 1, pp. 37-43, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

microbats are the insectivore who have the quality of

fascinating. These bats use a type of sonar namely as

echolocation. They emit a loud sound pulse and detect a echo

that is comes back from their surrounding objects. Their pulse

varying in properties and will be depend on the species. Their

loudness is also varying. When they are searching for their

prey, their loudness is loudest if they are far away from the

prey and they will become slow when they are nearer to the

prey. Now for emission and detection of echo which are

generated by them, they use time delay. And this time delay is

between their two ears and the loudness variation of echoes.

The following formulae are used for their position xi and

velocities vi when they are updated: fi = fmin + (fmax −

fmin)β, ...(2.1.1) vti = vt-1i + (xti – x*)fi, ...(2.1.2) xti = xt-1i

+ vti , ...(2.1.3) We know that loudness is decreases when bat

found its prey or food but the rate of pulse emission increases.

For simplicity we use loudness A0 = 1 and minimum Amin =

0 that means a bat found their prey and they stop making

sound. where β ∈ [0, 1] is a random vector drawn from a

uniform distribution. Here x∗ is the current global best

location (solution) which is located after comparing all the

solutions among all the n bats. Generally speaking, depending

on the domain size of the problem of interest, the frequency f

is assigned to fmin = 0 and fmax = 100 in practical

implementat ion. Initially, each bat is randomly given a

frequency which is drawn uniformly from [fmin, fmax]. For

the local search part, once a solution is selected among the

current best solutions, a new solution for each bat is generated

locally using random walk. Xnew = xold + εAt ...(2.1.4) The

update of the velocities and positions of bats have some

similarity to the procedure in the standard particle swarm

optimization as fi in essence controls the pace and range of the

movement of the swarming particles. To some degree, BA can

be considered as a balanced combination of the standard

particle swarm optimization and the intensive local search

controlled by the loudness and pulse rate. Furthermore, the

loudness Ai and the rate ri of pulse emission update

accordingly as the iterations proceed

G. Proposed K Mediods Bat Algorithm

In this section we will speed up local search by relaxing

the number of clusters in the intermediate steps and achieve

exactly k clusters in the final step. We must use at least k

medians in the intermediate steps, since the best solution with

k - 1 medians can be much more expensive than the best k

median solution, and we are interested in guarantees. At the

same time we cannot use too many since we want to save

space. Since we have flexibility in k, we can develop a new

cluster head detection using bat algorithm.

The proposed algorithm is given in as:

 Initializing the objective function f(x)

 Initialize the population of bat xi where i=1,2,3....n and

velocity vi

 Set the maximum iteration max_iter

 Set time t=1

 Define pulse frequency fi for bats at each position

 Define the pulse rate that is emitted by the bat ri and the

loudness Ai

o While(t < max_iter)

o Generate the new solutions by adjusting frequencies

and update velocity and location using formulae

(equation (1) to (3))

o Initialize k as initial representative object

o Assign each xi to its nearest representative object

with the most similar based on the medoids of the

objects in a cluster

o Select a non representative object randomly Orandom

o Calculate the cost S

If S < 0

Swap the Oi with Orandom

Else

Go to step b

If (rand > ri)

 Select a solution from the best solutions

 Generate a local solution

 End if

o Generate a new solution by the flying of bats

ramdomly

o If (rand <Ai)

 Accept the new solution

 Increment the pulse rate and decrement the loudness

o End if

o Rank the bats and find the bet population in bat x*

o Increase the t

o End while

 Result will be given

Fig. 8. Clustering flow diagram.

43

R. Suganya and S. Vydehi, “An efficient approach for clustering high dimensional data,” International Journal of Scientific and Technical

Advancements, Volume 2, Issue 1, pp. 37-43, 2016.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

Algorithm Initial Cluster (data set N , clusters z)

1. Reorder data points randomly

2. Create a cluster center at the first point 3. For every point

after the first,

 Let d= distance from the current point to the nearest

existing cluster center

 With probability d/z create a new cluster center at the

current point; otherwise add the current point to the best

current cluster

This algorithm runs in time proportional to n times the

number of facilities it opens and obtains an expected k-

approximation to optimum [11].

IV. RESULT EVALUATION

This section presents evaluation results of IAPKM and

IAPNA on Facebook Social dataset, which is streamed from

big data, is used. The goal of this project is to use incremental

variant of KM-BAT clustering, which can achieve comparable

clustering performance with traditional KM-BAT by adjusting

the current clustering results according to new arriving

objects. Therefore, traditional KM-BAT clustering is

implemented to provide benchmark-clustering performance.

The benchmark results are shown in below table I,

TABLE I. Comparison results of KM-BAT vs IAPKM vs IAPNA.

Time Object KM-BAT IAPKM IAPNA

5 1500 10 12 13

10 2500 14 15 17

15 3500 18 22 27

V. CONCLUSION

While the concept of incremental queries has been known

for some time, the clustering implications have not been

explored with users. In particular, it has been an open question

whether data analysts would be comfortable interacting with

confidence intervals. We hope that showing the utility of these

approximations will encourage further research on both the

front- and back-ends of these systems. This project had shown

that it is both progressive fetching and clustering to support

incremental query interactions for data analysts. With such

mechanisms in place, analysts can take advantage of the

immediate feedback afforded by incremental queries by

rapidly refining their queries, and more importantly, exploring

new avenues which they would not have done before .Our

approach has validated the concept of incremental queries. We

have shown that it is possible to use interaction strategies that

analysts have desired, but not been able to pursue given the

time required to complete clustering of large scale BIG data

databases. The experience of exposing users to incremental

queries and approximate clustering’s motivates several lines of

future work. First, it has highlighted the importance of

exploring representations of confidence. While error bars are

conventional, they are not necessarily easily comprehensible.

In addition, they can only highlight one probability value at a

time. The downsides of error bars, such as the difficulties they

raise with scaling, argue that there could be an opportunity to

find new ways to represent confidence intervals.

REFERENCES

[1] J. H. Par, “Differences among university students and faculties in social

networking site perception and use: Implications for academic library
services,” The Electronic Library, vol. 28, issue 3, pp. 417-31, 2010.

[2] A. Y. Mikami, D. E. Szwedo, J. P. Allen, M. A. Evans, and A. L. Hure,

“Adolescent peer relationships and behaviour problems predict young
adults' communication on social networking websites,” Developmental

Psychology, vol. 46, issue 1, pp. 46-56, 2010.

[3] K. Subrahmanyam, S. M. Reich, N. Waechter, and G. Espinoza, ,
“Online and offline social networks: Use of social networking sites by

emerging adults,” Journal of Applied Developmental Psychology, vol.

29, issue 6, pp. 420-33, 2008.
[4] T. A. Pempek, Y. A. Yermolayeva, and S. L. Calvert, “College students

social networking experiences on Facebook,” Journal of Applied

Developmental Psychology, vol. 30, issue 3, pp. 227-38, 2009.
[5] M. A. Shaheen, “Use of social networks and information seeking

behaviour of students during political crises in Pakistan: A case study,”

The International Information & Library Review, vol. 40, issue 3, pp.
142-47, 2008.

[6] A. Keenan and A. Shiri, “Sociability and social interaction on social

networking websites,” Library Review, vol. 58, no. 6, pp. 438-50, 2009.
[7] U. Pfeil, R. Arjan, and P. Zaphiris, “Age differences in online social

networking: A study of user profiles and the social capital divide among

teenagers and older users in MySpace,” Computers in Human
Behaviour, vol. 25, no. 3, pp. 643-54, 2009.

[8] B. Babcock, M. Datar, and R. Motwani, “Sampling from a moving

window over streaming data,” Proceedings SODA, 2002.
[9] Y. Bartal, M. Charikar, and D. Raz, “Approximating min-sum � -

clustering in metric spaces,” Proceedings STOC, 2001.

[10] A. Borodin, R. Ostrovsky, and Y. Rabani, “Subquadratic approximation
algorithms for clustering problems in high dimensional spaces,”

Proceedings STOC, 1999.

[11] P. S. Bradley, U. M. Fayyad, and C. Reina, “Scaling clustering
algorithms to large databases,” in Proceedings KDD, pp. 9–15, 1998.

[12] M. Charikar, S. Chaudhuri, R. Motwani, and V. R. Narasayya, “Towards

estimation error guarantees for distinct values,” in Proceedings PODS,
pp. 268–279, 2000.

[13] M. Charikar, C. Chekuri, T. Feder, and R. Motwani, “Incremental

clustering and dynamic information retrieval,” in Proceedings STOC, pp.
626–635, 1997.

[14] M. Charikar and S. Guha, “Improved combinatorial algorithms for the

facility location and k-median problems,” in Proceedings FOCS, pp.
378–388, 1999.

[15] M. Charikar, S. Guha, E . Tardos, and D. B. Shmoys, “A constant factor

approximation algorithm for the k-median problem,” Proceedings

STOC, 1999.

[16] F. A. Chudak, “Improved approximation algorithms for uncapacitated

facility location,” Proceedings IPCO, LNCS, vol. 1412, pp. 180–194,
1998.

[17] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining stream

statistics over sliding windows,” Proceedings SODA, 2002.
[18] P. Drineas, R. Kannan, A. Frieze, and V. Vinay, “Clustering in large

graphs and matrices,” Proceedings SODA, 1999.
[19] M. Ester, H. Kriegel, J. Sander, and X. Xu, A density-based algorithm

for discovering clusters in large spatial databases, In Proceedings KDD,

pp. 226–231, 1996.
[20] F. Farnstrom, J. Lewis, and C. Elkan, “True scalability for clustering

algorithms,” in SIGKDD Explorations, 2000.

http://www.sciencedirect.com/science/journal/01933973
http://www.sciencedirect.com/science/journal/01933973
http://www.sciencedirect.com/science/journal/10572317

