

45

T. Sivamani and R. Punitha, ―Multicore ECU in automotive domain with FPP scheduling,‖ International Journal of Scientific and Technical

Advancements, Volume 1, Issue 4, pp. 45-49, 2015.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

Multicore ECU in Automotive Domain with FPP

Scheduling

T. Sivamani
1
, R. Punitha

2

1, 2
Department of ECE, Hindusthan Institute of Technology

Email address:
2
rpunitha20@gmail.com

Abstract—The aim of ECU group is to research the Multicore architecture for automotive safety applications to meet hard real-time

embedded systems timing and reliability constraints. The automotive industry needs to change its architectural approach in developing

vehicle electronics systems. By integrating more number of functions in a limited set of ECUs. These new features involve greater

complexity in the design, development, and verification of the software applications. Hence, automotive industry manufacturers require

efficient tools and design methodologies to fulfill their needs in various aspects. In this project, we address the problem of sequencing the

infinite number of runnables on a limited set of distinct cores as the sequencer tasks in order to uniforming the CPU load over time.

The paper presents the low-complexity heuristics to partition and build sequencer tasks that execute the runnable set on each core. The

scheduling problem is being addressed globally at the ECU level, where other OS tasks are scheduled on the same cores as the sequencer

tasks. Further we are reducing the execution time of numerous runnables using intertask communication between distinct Multicore ECU’s

in efficient manner.

Keywords—Automotive; autosar; load balancing; multicore; runnable; scheduling; static cyclic scheduling.

I. INTRODUCTION

ultisource software running on the same

electronic control unit (ECU) is becoming

increasingly widespread in the automotive

industry. This case is one of the main reasons that car

manufacturers want to reduce the number of which grew up

above 70 for high-end cars. One major outcome of the

Automotive open system architecture (AUTOSAR) initiative

and, more specifically, its operating system (OS) is to help car

manufacturer’s shift from the ―one function per ECU‖

paradigm to more centralized architecture designs by

providing appropriate protection mechanisms. Another crucial

evolution in the automotive industry is those chips

manufacturers are reaching the point where they can no longer

cost effectively meet the increasing performance requirements

through frequency scaling alone. This condition is one reason

that multicore ECUs are gradually introduced in the

automotive domain. The higher level of performance provided

by multicore architectures may help simplify in-vehicle

architectures by executing on multiple cores that the software

previously run on multiple ECUs. This possible evolution

toward more centralized architectures is also an opportunity

for car manufacturers to decrease the number of network

connections and buses. As a result, parts of the complexity

will be transferred from the electrical/electronic architecture to

the hardware and software architecture of the ECUs. However,

static cyclic scheduling makes it easy to add functions to an

existing ECU.

In practice, important architectural shifts are hindered by

the carryover of ECUs and existing subnet works, which are

widely used by generalist car manufacturers. The extent to

which more centralized architectures will be adopted thus

remains unsure. Multicore ECUs are also helpful for other use

cases. For example, they bring major improvements for some

applications that require high performance such as high-end

engine controllers, electric and hybrid powertrains and

advanced driver assistance systems, which sometimes involve

real time image processing. These multicore platforms also

offer additional benefits such as higher level of parallelism,

allowing for more segregation, which may help meet the

requirements of the International Organization for

Standardization (ISO) 26262, which concerns functional

safety for road vehicles. Furthermore, in multicore

architectures, some core can be dedicated to a specialized

usage such as handling low-level services. Now, the challenge

is to adapt existing design methods to the new multicore

constraints.

 The scheduling of the software components is one of the

key issues in that regard, and it has tobe revamped. The

introduction of multisource and multicore will induce drastic

changes in the software architecture of automotive ECUs.

Section II introduces the most likely scheduling choices and

the literature relevant to the task scheduling in multiprocessor

automotive ECUs. Then, Section III presents solutions for the

scheduling of numerous software modules when only a few

OS tasks are allowed. This paper builds on the study published

in, where it was assumed that only one sequencer task was

running on each core of the ECU to schedule the runnables. In

Section V, we consider how we can build several sequencer

tasks while possibly scheduling other tasks on the same core,

and we discuss how we can globally analyze the schedulability

of such systems. For clarity, ―sequencing‖ refers to the

scheduling of runnables, whereas ―scheduling‖ is solely used

for tasks.

II. SCHEDULING IN THE AUTOMOTIVE DOMAIN

A. Scheduling Design Choices for Multicore ECUs

In this section, we explain and justify, particularly in light

of predictability requirements, the multicore scheduling

M

46

T. Sivamani and R. Punitha, ―Multicore ECU in automotive domain with FPP scheduling,‖ International Journal of Scientific and Technical

Advancements, Volume 1, Issue 4, pp. 45-49, 2015.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

approach, which is, to the best of our knowledge, the most

widely considered method in the automotive industry.

1) Partitioning scheduling scheme

In a multicore system, either the tasks are statically

allocated to the cores or they can dynamically be distributed at

runtime to balance the workload or migrate functions to

increase availability. The latter approach involves complex

tasks and resource interactions that are difficult to predict and

validate. Thus, approaches that rely on static allocation (i.e.,

partitioning) and deterministic mechanisms such as periodic

cyclic scheduling are more likely to be used in the automotive

context, and this is the option taken within the AUTOSAR

consortium. Scheduling tasks on a multiprocessor systems

under the static partitioning approach has been well studied;

However, the works we are aware of deal with online

algorithms such as fixed priority preemptive (FPP) or earliest

deadline first (EDF) and do not consider the static cyclic

scheduling of tasks.

2) Static cyclic scheduling

The static cyclic scheduling of elementary software

modules or runnables is common, because there are usually

many more runnables than the maximum number of tasks

allowed by automotive operating systems such as OSEK/VDX

or AUTOSAR OS. Thus, runnables must be grouped together

and scheduled within a sequencer task (also called a dispatcher

task). In this paper, we focus on how we can sequence large

runnable sets on multicore platforms using a static partitioning

approach. Indeed, the static task partitioning scheme is very

likely to be adopted, at least, in a first step, because it is

conceptually simple and provides better predictability for ECU

designers compared with a global scheduling approach. We

aim at developing practical algorithms whose performances

can be guaranteed to build the dispatcher tasks on each core

and to schedule the runnables within these dispatcher tasks to

comply with sampling constraints and, as long as possible,

uniformize the CPU load over time. This latter objective is, of

course, important to minimize the hardware cost and to

facilitate the addition of new functions, as typically done in

the incremental design process of car manufacturers. This

objective is achieved by desynchronizing the runnable release

dates. Precisely, the first release date of each runnable, called

its offset, is determined to uniformly spread the CPU demand

over time.

Fig. 1. Model of the runnables.

The configuration algorithms developed in this paper are

closely related to (monoprocessor scheduling of tasks with

offsets) and (scheduling of frames with offsets), but it is

applied to multicore and goes beyond as we provide lower

bounds on the performances. Because the problem is of

practical interest in the industry, there are in-house tools at the

car manufacturers and commercial tools that have been

developed for configuring the scheduling, such as Real Time

at-Work However, the proprietary algorithms used in these

tools can usually not be disclosed, and they are sometimes

specialized for some specific usage.

B. Model Description

In this paper, we consider a large set of n periodic

elementary software modules, also called runnables that will

be allocated on an ECU that consists of m identical cores. In

practice, a runnable can be implemented as a function that is

called, whenever appropriate, within the body of an OS task.

1) Runnable characteristics

The ith runnable is denoted by Ri = (Ci, Ti,Oi, {R}, Pi).

Quantities Ci, Ti, and Oi correspond, respectively, to the worst

case execution time (WCET), the period (i.e., the exact time

between two successive releases), and the offset of Ri. The

offset of a runnable is the release date of the first instance of

that runnable, and subsequent instances are then periodically

released. The choice made for the offset values has a direct

influence on the repartition of the workload over time. A set of

interrunnable dependencies is denoted by {R}.Indeed, due to

specific design requirements, such as shared variables, some

runnables may have to be allocated on the same core, and the

set {R} is used to capture these constraints. In addition, some

specific features, such as input/output (I/O) ports located on a

given core, may require a runnable to be allocated onto a

specific core. This locality constraint is expressed by Pi.

2) Dispatcher task

Runnables are scheduled on their designated core using a

dispatcher task or a ―sequencer task,‖which stores the

runnable activation times in a table and releases them at the

right points in time. A dispatcher task is characterized by the

duration of the dispatch table Tcycle, which is executed in a

cyclic manner, and by a quantum Ttic, which is the duration of

a slot in the table. Typically, we may have, for example,

Tcycle = 1000 ms and Ttic = 5 ms. Note that Tcycle must be a

multiple of the greatest common divisor of the runnable

periods and the least common multiple (LCM) of these periods

must be a multiple of Ttic. As a result, a dispatch table holds

Tcycle/Ttic slots.

3) Schedulability condition

Assuming that we only consider 6runnable scheduling, the

system is schedulable and, thus,can safely be deployed if and

only if the following conditions are satisfied on each core.

a) The runnables are strictly periodically executed.

b) The initial offset of each runnable is smaller than its

period.

c) The sum of the WCET of the runnables allocated in

each slot does not exceed a given threshold, which is

typically chosen as the duration of the slot, i.e., Ttic.

III. RUNNABLE SEQUENCING ALGORITHMS FOR MULTICORE

ECUS

In this section, we present algorithms and, when possible,

derive lower bounds on their efficiency to schedule large

numbers of runnables on multicore ECUs.

47

T. Sivamani and R. Punitha, ―Multicore ECU in automotive domain with FPP scheduling,‖ International Journal of Scientific and Technical

Advancements, Volume 1, Issue 4, pp. 45-49, 2015.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

Because automotive OSs can only handle a limited amount

of OS tasks, the sequencing of runnables has to be done within

dispatcher tasks. The first step of the approach is to partition

the runnable sets onto different cores. The next and last step is

to determine the offsets between the runnables allocated on

each core to balance the load over time.

Algorithm 1: Partitioning of the runnable set.

Input: Runnable set {Ri}, number of cores m

1) Group interdependent runnables into runnable clusters.

Independent runnables become clusters of size.

2) Allocate the runnable clusters that have a locality

constraint to the corresponding cores.

3) Sort the runnables clusters by decreasing order of CPU

utilization rate ρ=∑i(Ci/Ti).

4) Iterate over the sorted clusters.

a) Find the least loaded (LL) core.

b) Assign the current cluster to this core.

This presents practical solution for scheduling activities

according to both the static cyclic and priority-driven

paradigms as it is becoming a need in automotive multicore

ECUs and other complex embedded systems with

dependability requirements such as in the aerospace domain.

Multiprocessor task scheduling is a key research area in high

performance computing. without violating the deadlines, a set

of software modules called runnables on each processors

should be assigned and allocated at run time in order to

balancing the load over cpu .To overcome the run time

complexities, the runnables are allocated statically (i.e

partitioning) on each distinct cores.

Fig. 2. Simulation result partitioning the runnables.

Algorithm 2: Assigning runnables to slots—LL heuristic.

Input: Runnable set {Ri}, Ttic, Tcycle

1) Sort runnables Ri such that Ttic≤T1≤· · ·≤Tn≤Tcycle.

2) For i = 1. . . n

a) Look for the LL slot in the (Ti/Ttic) first slots.

b) Allocate Ri in every (Ti/Ttic) slot, starting from this

slot.

Step 1 runs in O(n log n). Step 2 iterates n times over

steps 2a and 2b, which run, respectively, in (Ti/Ttic)≤

(Tcycle/Ttic) and (Tcycle/Ti) ≤ (Tcycle/Ttic). As a result,

this algorithm runs in O(n(log n+(maxi{Ti}/Ttic)+(Tcycle/

mini{Ti}))≤ O(n(log n + 2(Tcycle/Ttic)).

The problem of sequencing runnables the LL algorithm

proposed by Grenier for the frame offset allocation on a

controller area network. The intuition behind the heuristic is

simple. The first important criterion is to have the lowest

maximum load in the cycle, because this will determine the

feasibility of the schedule and the possibility of adding further

functions later in the lifetime of the system. The maximum

load over all slots is also referred to as the peak load. In the

second step, a more fine-grained assessment of the uniformity

of the load balancing can be given by the standard deviation of

the load distribution over all the slots.

Fig. 3.Simulation result for LL heuristics.

Algorithm 3: LP heuristic.

Input: Runnable set {Ri}, Ttic, Tcycle

1) Sort runnables Ri such that Ttic ≤ T1 ≤ · · · ≤ Tn ≤

Tcycle.

2) Twindow = Ttic.

3) For i = 1. . . n

a) Twindow = LCM(Twindow, Ti).

b) In the first (Ti/Ttic) slots, look for the slot such that

the highest load in the slots where Ri is periodically

allocated in the (Twindow/Ttic) first slots is the

lowest.

c) Allocate Ri in every (Ti/Ttic) slot, starting from this

slot.

Step 1 of Algorithm 3 runs in O (n log n). Step 3a

runs in O(log Tcycle). Steps 3b and 3c, respectively, run in O

(n(Twindow/Ttic)) ≤ O(n(Tcycle/Ttic)) and O(n(Tcycle/Ti)) ≤

O(n(Tcycle/Ttic)). As a result, the whole algorithm runs in O

(n (log n + 2(Tcycle/Ti) + log Tcycle)).

Experiments show that these algorithms sometimes do not

always perform well with runnable sets where a few runnables

with low frequency have a very large WCET compared to

other runnables. In practice, runnables with a large WCET

tend to have a large period. As a result, runnables with a large

WCET are usually processed late in the runnable allocation,

which explains the load peaks. To reduce these peaks, the

scheduling algorithm is improved by first processing some

runnables with a large WCET. When the load is close to the

harmonic schedulability bound, the algorithms remain

efficient, in particular the LP, which successfully scheduled

the 1000 random configurations of the test. This result

suggests that the harmonic schedulability bound is also a good

dimensioning criterion in the non-harmonic case.

48

T. Sivamani and R. Punitha, ―Multicore ECU in automotive domain with FPP scheduling,‖ International Journal of Scientific and Technical

Advancements, Volume 1, Issue 4, pp. 45-49, 2015.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

Fig. 4. Simulation result for LP heuristics.

Least crowded algorithm: In this algorithm, each child

runnable is compared with its parent runnable. If the child

runnable dominates a parent runnable, the child runnable is

accepted as a parent runnable in the next generation. If a

parent runnable dominates the child runnable, the child

runnable is discarded and a new child runnable must be

created. In the case that both are indifferent, the child runnable

will be compared with an archive of so far best solutions. If it

dominates any member in the archive, it will be a parent

runnable in the next generation. But if the child runnable does

not dominate any member in the archive, both parent runnable

and child runnable are compared for their nearness (distance)

to members of the archive. Task utilization rate= WCET/

Time period. If the child runnable resides in a least crowded

region, it is accepted as a parent runnable and will be added to

the archive. In the case that child runnable and parent runnable

have the same nearness (distance) to the archive, one of them

is selected depending upon the nanosecond priority manner.

When the utilization rate decreases then the load on CPU also

decreases to run.

Distribution of the load percentage over time:

Fig. 5. Graphic shows the result of least crowded algorithm.

Fig. 6. Simulation result for LC heuristics.

IV. EXPERIMENTATIONS

Schedulability Performances and Robustness on Automotive

ECUs

The goal is to assess the extent to which the schedulability

bound, even if it has been derived in the harmonic case, can

provide guidelines for the nonharmonic case. Precisely, we

measure the success rate of the algorithms in the nonharmonic

case at load levels such that feasibility would be ensured in the

harmonic case. In the existing body gateway ECU, the set of

task periods is close to be harmonic, because withdrawing

only a few runnables ensures the harmonic property. To test

the algorithms in a more difficult context, we build a ―hard‖

nonharmonic case with more departure from the harmonic

property.

Performance Scheduling Algorithm:

Success rate of Algorithm WCET=500µs CPU load in %

Success % of LL 90 13

Success % of LP 91 13

Success % of LP1σ 92 17

Success % of LC 98 10

Success % of LP1 σ with

FPS
89 88

V. CONCLUSION

Multisource software and multicore ECUs will drastically

change the electrical/electronic architectures and should

enable more cost effective and more flexible automotive

embedded systems. In our view, the OS protection

mechanisms specified by AUTOSAR provide a sound basis

for developing appropriate safety mechanisms and policies,

despite the growing complexity and criticality of software

functions. However, current design methodologies need to be

adapted to this new context, and there is a wide range of

technical problems to be solved. Among these issues are the

design of the software architectures and the scheduling of the

software components, which have been considered in this

paper. The set of runnable sequencing algorithms proposed in

this paper aims at uniformizing the load over time and thus

increases the maximum workload schedulable on the CPU.

The algorithms also provide guaranteed performance levels in

some specific contexts. Experimentations on realistic case

studies have confirmed that the algorithms are versatile and

efficient in terms of CPU usage optimization.

REFERENCES

[1] Emadi, Y. Lee, and K. Rajashekara, ―Power electronics and motor drives

in electric, hybrid electric, and plug-in hybrid electric vehicles,‖ IEEE

Transactions on Industrial Electronics, vol. 55, no. 6, pp. 2237–2245,
2008.

[2] F. Mapelli, D. Tarsitano, and M. Mauri, ―Plug-in hybrid electricvehicle:

Modeling, prototype realization, and inverter loss reduction analysis,‖
IEEE Transactions on Industrial Electronics, vol. 57, no. 2, pp. 598–

607, 2010.

[3] D.-J. Kim, K.-H. Park, and Z. Bien, ―Hierarchical longitudinal controller
for rear-end collision avoidance,‖ IEEE Transactions on Industrial

Electronics, vol. 54, no. 2, pp. 805–817, 2007.

49

T. Sivamani and R. Punitha, ―Multicore ECU in automotive domain with FPP scheduling,‖ International Journal of Scientific and Technical

Advancements, Volume 1, Issue 4, pp. 45-49, 2015.

International Journal of Scientific and Technical Advancements
 ISSN: 2454-1532

[4] T. Bucher, C. Curio, J. Edelbrunner, C. Igel, D. Kastrup, I. Leefken, G.

Lorenz, A. Steinhage, and W. von Seelen, ―Image processing and
behavior planning for intelligent vehicles,‖ IEEE Transactions on

Industrial Electronics, vol. 50, no. 1, pp. 62–75, 2003.

[5] N. Navet, A. Monot, B. Bavoux, and F. Simonot-Lion, ―Multisource and
multicore automotive ECUs—OS protection mechanisms and

scheduling,‖ in Proceedings IEEE International Symposium on

Industrial Electronics (ISIE), pp. 3734–3741, 2010.

[6] A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son, ―New strategies for

assigning real-time tasks to multiprocessor systems,‖ IEEE Transactions
on Computers, vol. 44, no. 12, pp. 1429–1442, 1995.

[7] Y. Oh and S. Son, ―Fixed-priority scheduling of periodic tasks on

multiprocessor systems,‖ Department of Computer Science, University
of Virginia, Charlottesville, VA, Tech. Rep. CS-95-16, 1995.

[8] S. Lauzac, R. Melhem, and D. Mossé, ―An improved rate-monotonic

admission control and its applications,‖ IEEE Transactions on
Computers, vol. 52, no. 3, pp. 337– 350, 2003.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5609073
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5609073

