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Abstract—The aim of ECU group is to research the Multicore architecture for automotive safety applications to meet hard real-time 

embedded systems timing and reliability constraints. The automotive industry needs to change its architectural approach in developing 

vehicle electronics systems. By integrating more number of functions in a limited set of ECUs. These new features involve greater 

complexity in the design, development, and verification of the software applications. Hence, automotive industry manufacturers require 

efficient tools and design methodologies to fulfill their needs in various aspects. In this project, we address the problem of sequencing the 

infinite number of runnables on a limited set of distinct cores as the sequencer tasks in order to uniforming the CPU load over time. 

The paper presents the low-complexity heuristics to partition and build sequencer tasks that execute the runnable set on each core. The 

scheduling problem is being addressed globally at the ECU level, where other OS tasks are scheduled on the same cores as the sequencer 

tasks. Further we are reducing the execution time of numerous runnables using intertask communication between distinct Multicore ECU’s 

in efficient manner. 
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I. INTRODUCTION  

ultisource software running on the same 

electronic control unit (ECU) is becoming 

increasingly widespread in the automotive 

industry. This case is one of the main reasons that car 

manufacturers want to reduce the number of which grew up 

above 70 for high-end cars. One major outcome of the 

Automotive open system architecture (AUTOSAR) initiative 

and, more specifically, its operating system (OS) is to help car 

manufacturer’s shift from the ―one function per ECU‖ 

paradigm to more centralized architecture designs by 

providing appropriate protection mechanisms. Another crucial 

evolution in the automotive industry is those chips 

manufacturers are reaching the point where they can no longer 

cost effectively meet the increasing performance requirements 

through frequency scaling alone. This condition is one reason 

that multicore ECUs are gradually introduced in the 

automotive domain. The higher level of performance provided 

by multicore architectures may help simplify in-vehicle 

architectures by executing on multiple cores that the software 

previously run on multiple ECUs. This possible evolution 

toward more centralized architectures is also an opportunity 

for car manufacturers to decrease the number of network 

connections and buses. As a result, parts of the complexity 

will be transferred from the electrical/electronic architecture to 

the hardware and software architecture of the ECUs. However, 

static cyclic scheduling makes it easy to add functions to an 

existing ECU. 

In practice, important architectural shifts are hindered by 

the carryover of ECUs and existing subnet works, which are 

widely used by generalist car manufacturers. The extent to 

which more centralized architectures will be adopted thus 

remains unsure. Multicore ECUs are also helpful for other use 

cases. For example, they bring major improvements for some 

applications that require high performance such as high-end 

engine controllers, electric and hybrid powertrains and 

advanced driver assistance systems, which sometimes involve 

real time image processing. These multicore platforms also 

offer additional benefits such as higher level of parallelism, 

allowing for more segregation, which may help meet the 

requirements of the International Organization for 

Standardization (ISO) 26262, which concerns functional 

safety for road vehicles. Furthermore, in multicore 

architectures, some core can be dedicated to a specialized 

usage such as handling low-level services. Now, the challenge 

is to adapt existing design methods to the new multicore 

constraints. 

 The scheduling of the software components is one of the 

key issues in that regard, and it has tobe revamped. The 

introduction of multisource and multicore will induce drastic 

changes in the software architecture of automotive ECUs. 

Section II introduces the most likely scheduling choices and 

the literature relevant to the task scheduling in multiprocessor 

automotive ECUs. Then, Section III presents solutions for the 

scheduling of numerous software modules when only a few 

OS tasks are allowed. This paper builds on the study published 

in, where it was assumed that only one sequencer task was 

running on each core of the ECU to schedule the runnables. In 

Section V, we consider how we can build several sequencer 

tasks while possibly scheduling other tasks on the same core, 

and we discuss how we can globally analyze the schedulability 

of such systems. For clarity, ―sequencing‖ refers to the 

scheduling of runnables, whereas ―scheduling‖ is solely used 

for tasks.  

II. SCHEDULING IN THE AUTOMOTIVE DOMAIN 

A. Scheduling Design Choices for Multicore ECUs 

In this section, we explain and justify, particularly in light 

of predictability requirements, the multicore scheduling 
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approach, which is, to the best of our knowledge, the most 

widely considered method in the automotive industry. 

1) Partitioning scheduling scheme  

In a multicore system, either the tasks are statically 

allocated to the cores or they can dynamically be distributed at 

runtime to balance the workload or migrate functions to 

increase availability. The latter approach involves complex 

tasks and resource interactions that are difficult to predict and 

validate. Thus, approaches that rely on static allocation (i.e., 

partitioning) and deterministic mechanisms such as periodic 

cyclic scheduling are more likely to be used in the automotive 

context, and this is the option taken within the AUTOSAR 

consortium. Scheduling tasks on  a multiprocessor systems 

under the static partitioning approach has been well studied; 

However, the works we are aware of deal with online 

algorithms such as fixed priority preemptive (FPP) or earliest 

deadline first (EDF) and do not consider the static cyclic 

scheduling of tasks. 

2) Static cyclic scheduling 

The static cyclic scheduling of elementary software 

modules or runnables is common, because there are usually 

many more runnables than the maximum number of tasks 

allowed by automotive operating systems such as OSEK/VDX 

or AUTOSAR OS. Thus, runnables must be grouped together 

and scheduled within a sequencer task (also called a dispatcher 

task). In this paper, we focus on how we can sequence large 

runnable sets on multicore platforms using a static partitioning 

approach. Indeed, the static task partitioning scheme is very 

likely to be adopted, at least, in a first step, because it is 

conceptually simple and provides better predictability for ECU 

designers compared with a global scheduling approach. We 

aim at developing practical algorithms whose performances 

can be guaranteed to build the dispatcher tasks on each core 

and to schedule the runnables within these dispatcher tasks to 

comply with sampling constraints and, as long as possible, 

uniformize the CPU load over time. This latter objective is, of 

course, important to minimize the hardware cost and to 

facilitate the addition of new functions, as typically done in 

the incremental design process of car manufacturers. This 

objective is achieved by desynchronizing the runnable release 

dates. Precisely, the first release date of each runnable, called 

its offset, is determined to uniformly spread the CPU demand 

over time.  

 

 
Fig. 1. Model of the runnables. 

 

The configuration algorithms developed in this paper are 

closely related to (monoprocessor scheduling of tasks with 

offsets) and (scheduling of frames with offsets), but it is 

applied to multicore and goes beyond as we provide lower 

bounds on the performances. Because the problem is of 

practical interest in the industry, there are in-house tools at the 

car manufacturers and commercial tools that have been 

developed for configuring the scheduling, such as Real Time 

at-Work However, the proprietary algorithms used in these 

tools can usually not be disclosed, and they are sometimes 

specialized for some specific usage. 

B. Model Description 

In this paper, we consider a large set of n periodic 

elementary software modules, also called runnables that will 

be allocated on an ECU that consists of m identical cores. In 

practice, a runnable can be implemented as a function that is 

called, whenever appropriate, within the body of an OS task. 

1) Runnable characteristics 

The ith runnable is denoted by Ri = (Ci, Ti,Oi, {R}, Pi). 

Quantities Ci, Ti, and Oi correspond, respectively, to the worst 

case execution time (WCET), the period (i.e., the exact time 

between two successive releases), and the offset of Ri. The 

offset of a runnable is the release date of the first instance of 

that runnable, and subsequent instances are then periodically 

released. The choice made for the offset values has a direct 

influence on the repartition of the workload over time. A set of 

interrunnable dependencies is denoted by {R}.Indeed, due to 

specific design requirements, such as shared variables, some 

runnables may have to be allocated on the same core, and the 

set {R} is used to capture these constraints. In addition, some 

specific features, such as input/output (I/O) ports located on a 

given core, may require a runnable to be allocated onto a 

specific core. This locality constraint is expressed by Pi. 

2) Dispatcher task 

Runnables are scheduled on their designated core using a 

dispatcher task or a ―sequencer task,‖which stores the 

runnable activation times in a table and releases them at the 

right points in time. A dispatcher task is characterized by the 

duration of the dispatch table Tcycle, which is executed in a 

cyclic manner, and by a quantum Ttic, which is the duration of 

a slot in the table. Typically, we may have, for example, 

Tcycle = 1000 ms and Ttic = 5 ms. Note that Tcycle must be a 

multiple of the greatest common divisor of the runnable 

periods and the least common multiple (LCM) of these periods 

must be a multiple of Ttic. As a result, a dispatch table holds 

Tcycle/Ttic slots. 

3) Schedulability condition 

Assuming that we only consider 6runnable scheduling, the 

system is schedulable and, thus,can safely be deployed if and 

only if the following conditions are satisfied on each core. 

a) The runnables are strictly periodically executed. 

b) The initial offset of each runnable is smaller than its 

period. 

c) The sum of the WCET of the runnables allocated in 

each slot does not exceed a given threshold, which is 

typically chosen as the duration of the slot, i.e., Ttic. 

III. RUNNABLE SEQUENCING ALGORITHMS FOR MULTICORE 

ECUS 

In this section, we present algorithms and, when possible, 

derive lower bounds on their efficiency to schedule large 

numbers of runnables on multicore ECUs. 
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Because automotive OSs can only handle a limited amount 

of OS tasks, the sequencing of runnables has to be done within 

dispatcher tasks. The first step of the approach is to partition 

the runnable sets onto different cores. The next and last step is 

to determine the offsets between the runnables allocated on 

each core to balance the load over time. 

Algorithm 1: Partitioning of the runnable set. 

Input: Runnable set {Ri}, number of cores m 

1) Group interdependent runnables into runnable clusters. 

Independent runnables become clusters of size. 

2) Allocate the runnable clusters that have a locality 

constraint to the corresponding cores. 

3) Sort the runnables clusters by decreasing order of CPU 

utilization rate ρ=∑i(Ci/Ti). 

4) Iterate over the sorted clusters. 

a) Find the least loaded (LL) core. 

b) Assign the current cluster to this core.  

This presents practical solution for scheduling activities 

according to both the static cyclic and priority-driven 

paradigms as it is becoming a need in automotive multicore 

ECUs and other complex embedded systems with 

dependability requirements such as in the aerospace domain. 

Multiprocessor task scheduling is a key research area in high 

performance computing. without violating the deadlines, a set 

of software modules called runnables on each processors  

should be  assigned and allocated at run time in order to 

balancing the load over cpu .To overcome the run time 

complexities, the runnables  are allocated statically (i.e 

partitioning ) on each distinct cores.  

 

 
Fig. 2. Simulation result partitioning the runnables. 

 

Algorithm 2: Assigning runnables to slots—LL heuristic. 

Input: Runnable set {Ri}, Ttic, Tcycle 

1) Sort runnables Ri such that Ttic≤T1≤· · ·≤Tn≤Tcycle. 

2) For i = 1. . . n 

a) Look for the LL slot in the (Ti/Ttic) first slots. 

b) Allocate Ri in every (Ti/Ttic) slot, starting from this 

slot. 

Step 1 runs in O(n log n). Step 2 iterates n times over 

steps 2a and 2b, which run, respectively, in (Ti/Ttic)≤ 

(Tcycle/Ttic) and (Tcycle/Ti) ≤ (Tcycle/Ttic). As a result, 

this algorithm runs in O(n(log n+(maxi{Ti}/Ttic)+(Tcycle/ 

mini{Ti}))≤ O(n(log n + 2(Tcycle/Ttic)). 

The problem of sequencing runnables the LL algorithm 

proposed by Grenier for the frame offset allocation on a 

controller area network. The intuition behind the heuristic is 

simple. The first important criterion is to have the lowest 

maximum load in the cycle, because this will determine the 

feasibility of the schedule and the possibility of adding further 

functions later in the lifetime of the system. The maximum 

load over all slots is also referred to as the peak load. In the 

second step, a more fine-grained assessment of the uniformity 

of the load balancing can be given by the standard deviation of 

the load distribution over all the slots. 

 

 
Fig. 3.Simulation result for LL heuristics. 

 

Algorithm 3: LP heuristic. 

Input: Runnable set {Ri}, Ttic, Tcycle 

1) Sort runnables Ri such that Ttic ≤ T1 ≤ · · · ≤ Tn ≤ 

Tcycle. 

2) Twindow = Ttic. 

3) For i = 1. . . n 

a) Twindow = LCM(Twindow, Ti). 

b) In the first (Ti/Ttic) slots, look for the slot such that 

the highest load in the slots where Ri is periodically 

allocated in the (Twindow/Ttic) first slots is the 

lowest. 

c) Allocate Ri in every (Ti/Ttic) slot, starting from this 

slot. 

Step 1 of Algorithm 3 runs in O (n log n). Step 3a 

runs in O(log Tcycle). Steps 3b and 3c, respectively, run in O 

(n(Twindow/Ttic)) ≤ O(n(Tcycle/Ttic)) and O(n(Tcycle/Ti)) ≤ 

O(n(Tcycle/Ttic)). As a result, the whole algorithm runs in O 

(n (log n + 2(Tcycle/Ti) + log Tcycle)). 

Experiments show that these algorithms sometimes do not 

always perform well with runnable sets where a few runnables 

with low frequency have a very large WCET compared to 

other runnables. In practice, runnables with a large WCET 

tend to have a large period. As a result, runnables with a large 

WCET are usually processed late in the runnable allocation, 

which explains the load peaks. To reduce these peaks, the 

scheduling algorithm is improved by first processing some 

runnables with a large WCET. When the load is close to the 

harmonic schedulability bound, the algorithms remain 

efficient, in particular the LP, which successfully scheduled 

the 1000 random configurations of the test. This result 

suggests that the harmonic schedulability bound is also a good 

dimensioning criterion in the non-harmonic case. 
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Fig. 4. Simulation result for LP heuristics. 

 

Least crowded algorithm: In this algorithm, each child 

runnable is compared with its parent runnable. If the child 

runnable dominates a parent runnable, the child runnable is 

accepted as a parent runnable in the next generation. If a 

parent runnable dominates the child runnable, the child 

runnable is discarded and a new child runnable must be 

created. In the case that both are indifferent, the child runnable 

will be compared with an archive of so far best solutions. If it 

dominates any member in the archive, it will be a parent 

runnable in the next generation. But if the child runnable does 

not dominate any member in the archive, both parent runnable 

and child runnable are compared for their nearness (distance) 

to members of the archive. Task utilization rate= WCET/ 

Time period. If the child runnable resides in a least crowded 

region, it is accepted as a parent runnable and will be added to 

the archive. In the case that child runnable and parent runnable 

have the same nearness (distance) to the archive, one of them 

is selected depending upon the nanosecond priority manner. 

When the utilization rate decreases then the load on CPU also 

decreases to run. 
 

Distribution of the load percentage over time: 

 
Fig. 5. Graphic shows the result of least crowded algorithm. 

 

 
Fig. 6. Simulation result for LC heuristics. 

IV. EXPERIMENTATIONS 

Schedulability Performances and Robustness on Automotive 

ECUs 

The goal is to assess the extent to which the schedulability 

bound, even if it has been derived in the harmonic case, can 

provide guidelines for the nonharmonic case. Precisely, we 

measure the success rate of the algorithms in the nonharmonic 

case at load levels such that feasibility would be ensured in the 

harmonic case. In the existing body gateway ECU, the set of 

task periods is close to be harmonic, because withdrawing 

only a few runnables ensures the harmonic property. To test 

the algorithms in a more difficult context, we build a ―hard‖ 

nonharmonic case with more departure from the harmonic 

property. 

 

Performance Scheduling Algorithm: 

Success rate of Algorithm WCET=500µs CPU load in % 

Success % of LL 90 13 

Success % of LP 91 13 

Success % of LP1σ 92 17 

Success % of LC 98 10 

Success % of LP1 σ with 

FPS 
89 88 

V. CONCLUSION 

Multisource software and multicore ECUs will drastically 

change the electrical/electronic architectures and should 

enable more cost effective and more flexible automotive 

embedded systems. In our view, the OS protection 

mechanisms specified by AUTOSAR provide a sound basis 

for developing appropriate safety mechanisms and policies, 

despite the growing complexity and criticality of software 

functions. However, current design methodologies need to be 

adapted to this new context, and there is a wide range of 

technical problems to be solved. Among these issues are the 

design of the software architectures and the scheduling of the 

software components, which have been considered in this 

paper. The set of runnable sequencing algorithms proposed in 

this paper aims at uniformizing the load over time and thus 

increases the maximum workload schedulable on the CPU. 

The algorithms also provide guaranteed performance levels in 

some specific contexts. Experimentations on realistic case 

studies have confirmed that the algorithms are versatile and 

efficient in terms of CPU usage optimization. 
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